Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 822
Filtrar
1.
Arch Toxicol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563869

RESUMO

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.

2.
J Vet Intern Med ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647141

RESUMO

BACKGROUND: Pharmacokinetics of amikacin administered IV to neonatal foals are described, but little data are available regarding the plasma concentrations contributed by concurrent intra-articular (IA) administration. HYPOTHESIS/OBJECTIVES: Compare the pharmacokinetics of amikacin when the total dose is administered IV compared to being divided between IV and IA routes of administration in neonatal foals and predict the plasma concentrations from various combined IV and IA dosing regimens. ANIMALS: Eight healthy neonatal foals. METHODS: Foals received 3 amikacin treatment protocols: (1) IV-only (25 mg/kg q24h IV), (2) concurrent IV and IA (16.7 mg/kg q24h IV and 8.3 mg/kg q24h into 1 tarsocrural joint), and (3) IA-only (8.3 mg/kg q24h into 1 tarsocrural joint). Protocols were administered for 3 days beginning at 7, 14, and 21 days of age. Plasma concentrations ≥53 µg/mL at 30 minutes were considered therapeutic for isolates with intermediate susceptibility. RESULTS: Foal age was a significant variable. The IV-only protocol met or exceeded the 30-minute plasma concentrations considered therapeutic (mean µg/mL [95% confidence interval, CI]) in 7- to 9-day-old (54.0 [52.2-56.9]), 14- to 16-day-old (58.1 [55.2-61.0]), and 21- to 23-day-old (66.6 [63.7-69.6]) foals. Concurrent IV and IA protocol did not reach the 30-minute concentration considered therapeutic in 7- to 9-day-old foals (46.5 [43.6-49.4]) but did in 14- to 16-day-old (62.9 [60.0-65.8]) and 21-to 23-day-old (62.6 [59.7-65.6]) foals. CONCLUSIONS AND CLINICAL IMPORTANCE: Concurrent IV and IA administration of amikacin produces 30-minute plasma concentrations considered therapeutic in foals 14 to 23 days old, but concentrations observed in younger foals might be below those considered therapeutic for isolates with intermediate susceptibility to amikacin.

4.
Int J Antimicrob Agents ; : 107181, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653351

RESUMO

BACKGROUND: The aminoglycoside apramycin has been proposed as a drug candidate for the treatment of critical Gram-negative systemic infections. However, its potential in the treatment of drug-resistant bloodstream infections (BSIs) has yet to be assessed. METHODS: The resistance gene annotations of 40 888 blood culture isolates were analyzed. In vitro profiling of apramycin comprised cell-free translation assays, broth microdilution, and frequency of resistance determination. The efficacy of apramycin was studied in a mouse peritonitis model for nine Escherichia coli and Klebsiella pneumoniae isolates. RESULTS: Genotypic aminoglycoside resistance was identified in 87.8% of all 6973 carbapenem-resistant Enterobacterales blood-culture isolates, in comparison to 46.4% of colistin and 2.1% of apramycin resistance. Apramycin activity against methylated ribosomes was > 100-fold higher than other aminoglycosides. Frequencies of resistance were < 10-9 at 8  ×  MIC. Tentative epidemiological cutoffs (ECOFFs) were determined as 8 µg/mL for E. coli and 4 µg/mL for K. pneumoniae. A single dose of 5 to 13 mg/kg resulted in a 1-log CFU reduction in the blood and peritoneum. Two doses of 80 mg/kg, resulting in an exposure that resembles the AUC observed for a single 30 mg/kg dose in humans, resulted in complete eradication of carbapenem- and aminoglycoside-resistant bacteremias. CONCLUSION: Encouraging coverage and potent in vivo efficacy against a selection of highly drug-resistant Enterobacterales isolates in the mouse peritonitis model warrants further consideration of clinical studies to validate apramycin as a drug candidate for the treatment and prophylaxis of BSI.

6.
J Mol Med (Berl) ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430393

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder resulting from genetic mutations in the methyl CpG binding protein 2 (MeCP2) gene. Specifically, around 35% of RTT patients harbor premature termination codons (PTCs) within the MeCP2 gene due to nonsense mutations. A promising therapeutic avenue for these individuals involves the use of aminoglycosides, which stimulate translational readthrough (TR) by causing stop codons to be interpreted as sense codons. However, the effectiveness of this treatment depends on several factors, including the type of stop codon and the surrounding nucleotides, collectively referred to as the stop codon context (SCC). Here, we develop a high-content reporter system to precisely measure TR efficiency at different SCCs, assess the recovery of the full-length MeCP2 protein, and evaluate its subcellular localization. We have conducted a comprehensive investigation into the intricate relationship between SCC characteristics and TR induction, examining a total of 14 pathogenic MeCP2 nonsense mutations with the aim to advance the prospects of personalized therapy for individuals with RTT. Our results demonstrate that TR induction can successfully restore full-length MeCP2 protein, albeit to varying degrees, contingent upon the SCC and the specific position of the PTC within the MeCP2 mRNA. TR induction can lead to the re-establishment of nuclear localization of MeCP2, indicating the potential restoration of protein functionality. In summary, our findings underscore the significance of SCC-specific approaches in the development of tailored therapies for RTT. By unraveling the relationship between SCC and TR therapy, we pave the way for personalized, individualized treatment strategies that hold promise for improving the lives of individuals affected by this debilitating neurodevelopmental disorder. KEY MESSAGES: The efficiency of readthrough induction at MeCP2 premature termination codons strongly depends on the stop codon context. The position of the premature termination codon on the transcript influences the readthrough inducibility. A new high-content dual reporter assay facilitates the measurement and prediction of readthrough efficiency of specific nucleotide stop contexts. Readthrough induction results in the recovery of full-length MeCP2 and its re-localization to the nucleus. MeCP2 requires only one of its annotated nuclear localization signals.

7.
Vet Res Forum ; 15(2): 97-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465318

RESUMO

Aminoglycoside antibiotics (AGs) can cause neuromuscular blockade and paralysis of skeletal muscles. To compare the paralytic effects of selected AGs on some motor behaviors in mice, 24 male mice were divided into four groups. Each group was given one of AGs (gentamicin, dihydro-streptomycin, apramycin and amikacin) at incremental doses that increased half-logarithmically compared to the therapeutic dose (16.00 mg kg-1). Motor behavioral tests included open field test, inclined plane, horizontal bars, static rods, parallel bars and rotarod. Finally, the data were analyzed using descriptive and analytical statistics. Gentamicin and dihydrostreptomycin at 32.00 times of the therapeutic dose produced complete paralysis of the limbs, respiratory arrest, and even death in some animals. However, apramycin and amikacin did not show significant effects on skeletal muscle and motor behaviors at 32.00 times of the therapeutic dose. After administration of apramycin at 100 times of the therapeutic dose, four out of six mice (66.67%) died from respiratory depression. Amikacin at this dose did not cause animal death, although it caused some changes in motor behaviors with a significant difference in comparison with control values. Gentamicin demonstrated significantly more potent effects on motor behaviors compared to the other AGs. Overall, the order of potency was gentamicin > dihydrostreptomycin > apramycin > amikacin. High doses of AGs could impair the skeletal muscle function and disrupt motor behaviors in mice. Furthermore, the paralytic potency of selected AGs on skeletal muscle was significantly different.

8.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474424

RESUMO

Briefly (10 min) exposing C2C12 myotubes to low amplitude (1.5 mT) pulsed electromagnetic fields (PEMFs) generated a conditioned media (pCM) that was capable of mitigating breast cancer cell growth, migration, and invasiveness in vitro, whereas the conditioned media harvested from unexposed myotubes, representing constitutively released secretome (cCM), was less effective. Administering pCM to breast cancer microtumors engrafted onto the chorioallantoic membrane of chicken eggs reduced tumor volume and vascularity. Blood serum collected from PEMF-exposed or exercised mice allayed breast cancer cell growth, migration, and invasiveness. A secretome preconditioning methodology is presented that accentuates the graded anticancer potencies of both the cCM and pCM harvested from myotubes, demonstrating an adaptive response to pCM administered during early myogenesis that emulated secretome-based exercise adaptations observed in vivo. HTRA1 was shown to be upregulated in pCM and was demonstrated to be necessary and sufficient for the anticancer potency of the pCM; recombinant HTRA1 added to basal media recapitulated the anticancer effects of pCM and antibody-based absorption of HTRA1 from pCM precluded its anticancer effects. Brief and non-invasive PEMF stimulation may represent a method to commandeer the secretome response of muscle, both in vitro and in vivo, for clinical exploitation in breast and other cancers.


Assuntos
Neoplasias da Mama , Campos Eletromagnéticos , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Secretoma , Animais , Camundongos , Meios de Cultivo Condicionados , Fibras Musculares Esqueléticas , Secretoma/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia
9.
Antimicrob Agents Chemother ; 68(4): e0153923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470195

RESUMO

Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.


Assuntos
Amicacina , Peptídeos Cíclicos , Infecções por Pseudomonas , Animais , Camundongos , Amicacina/farmacologia , Pseudomonas aeruginosa , Potenciais da Membrana , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Tobramicina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
10.
Appl Environ Microbiol ; 90(4): e0231123, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38446071

RESUMO

It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, extracellular beta-lactamases produced by resistant cells that subsequently degrade penicillin and related antibiotics allow neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show in multiple bacterial species that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface-grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss was still observed. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.IMPORTANCEPlasmids are routinely used in microbiology as readouts of cell biology or tools to manipulate cell function. Central to these studies is the assumption that all cells in an experiment contain the plasmid. Plasmid maintenance in a host cell typically depends on a plasmid-encoded antibiotic resistance marker, which provides a selective advantage when the plasmid-containing cell is grown in the presence of antibiotic. Here, we find that growth of plasmid-containing bacteria on a surface and to a lesser extent in liquid culture in the presence of three distinct antibiotic families leads to the evolution of a significant number of plasmid-free cells, which rely on the resistance mechanisms of the plasmid-containing cells. This process generates a heterogenous population of plasmid-free and plasmid-containing bacteria, an outcome which could confound further experimentation.


Assuntos
Antibacterianos , Bactérias , Humanos , Plasmídeos/genética , Antibacterianos/farmacologia , Bactérias/genética , beta-Lactamases/genética , Penicilinas/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38314602

RESUMO

A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in Klebsiella pneumoniae infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant Klebsiella pneumoniae Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continuing fight against bacterial resistance, directing future research efforts and medicinal approaches.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38388739

RESUMO

PURPOSE: Single doses of gentamicin have demonstrated clinical efficacy in the treatment of urogenital gonorrhea, but lower cure rates for oropharyngeal and anorectal gonorrhea. Formulations selectively enriched in specific gentamicin C congeners have been proposed as a less toxic alternative to gentamicin, potentially permitting higher dosing to result in increased plasma exposures at the extragenital sites of infection. The purpose of the present study was to compare the antibacterial activity of individual gentamicin C congeners against Neisseria gonorrhoeae to that of other aminoglycoside antibiotics. METHODS: Antimicrobial susceptibility of three N. gonorrhoeae reference strains and 152 clinical isolates was assessed using standard disk diffusion, agar dilution, and epsilometer tests. RESULTS: Gentamicin C1, C2, C1a, and C2a demonstrated similar activity against N. gonorrhoeae. Interestingly, susceptibility to the 1-N-ethylated aminoglycosides etimicin and netilmicin was significantly higher than the susceptibility to their parent compounds gentamicin C1a and sisomicin, and to any other of the 25 aminoglycosides assessed in this study. Propylamycin, a 4'-propylated paromomycin analogue, was significantly more active against N. gonorrhoeae than its parent compound, too. CONCLUSION: Selectively enriched gentamicin formulations hold promise for a less toxic but equally efficacious alternative to gentamicin. Our study warrants additional consideration of the clinically established netilmicin and etimicin for treatment of genital and perhaps extragenital gonorrhea. Additional studies are required to elucidate the mechanism behind the advantage of alkylated aminoglycosides.

13.
Data Brief ; 53: 110154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375149

RESUMO

Staphylococcus haemolyticus 010503B is a multidrug-resistant bacterium isolated from an outpatient clinic in a hospital waiting area in Thailand. Here we present the draft genome sequence of S. haemolyticus 010503B. The paired-end reads were generated on the Illumina NextSeq 550 sequencer using genomic DNA from the pure culture of S. haemolyticus 010503B. The draft genome consisted of 114 contigs with a total size of 2,457,654 base pairs, an N50 of 57,312 base pairs and a GC content of 32.60%. The dDDH between 010503B and Staphylococcus haemolyticus SM 131T was 91.9%, identifying the strain as Staphylococcus haemolyticus. The data presented holds promise for bacterial classification, comparative genomics, analysing antimicrobial resistance comprehensively, and assessing bacterial virulence factors of S. haemolyticus. The draft genome sequence data has been deposited at NCBI under Bioproject accession number PRJNA550309.

14.
Heliyon ; 10(3): e25190, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333844

RESUMO

Background: Pulmonary infections by gram-negative organisms are important in cystic fibrosis (CF). Aminoglycosides (AG) are often part of the treatment regimen. However, they are a well-known cause of ototoxicity. Even minimal hearing impairment in children could have a future impact on functional well-being.We aimed to investigate the progression of sensorineural hearing loss (SNHL) over several years in pediatric CF patients, and to identify risk factors, such as the use of AG, including both intravenous (IV) and inhaled AG. Methods: Retrospective analyses of patient records from children and adolescents followed up at the CF clinic of the Antwerp University Hospital, Belgium, were performed. We collected data on age, sex, pure-tone audiometry, and the use of AG. Descriptive and binary logistic regression analyses, and if indicated generalized estimating equations (GEE) analyses were performed. Results: Forty pediatric patients were enrolled in the study taking part from 2013 to 2020. Pure-tone audiometry revealed an important rate of SNHL over several years, with a prevalence of 29 % for high-frequency SNHL (i.e. 8 kHz). Increasing age was identified as a significant risk factor for the development of SNHL at 8 kHz if 5 or more IV AG courses (p = 0.01) were reported or when IV AG were combined with inhaled AG (p = 0.002). Conclusions: Age combined with the use of IV AG (≥5 courses or in combination with inhaled AG) are predictive for developing high-frequency SNHL (i.e. 8 kHz). We suggest routine annual hearing screening (incl. high-frequency thresholds) in CF patients, starting from childhood.

15.
Antibiotics (Basel) ; 13(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38391577

RESUMO

Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.

16.
J Chemother ; : 1-5, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372170

RESUMO

The rise in ESBL-producing and carbapenem-resistant Gram-negative bacterial infections is alarming. Aminoglycosides remain attractive for treating urinary tract infections (UTIs). However, aminoglycosides-associated acute kidney injury (AKI) raises concerns, especially in patients with underlying renal impairment. We conducted a retrospective cohort study to evaluate the risk of AKI in patients with UTI empirically treated with amikacin. Among 395 patients (median age 41.9 years [IQR 28.3-67.1], 342 [86.6%] female), 162 (41.0%) received amikacin and 233 (59.0%) were empirically treated with other antibiotics. AKI incidence was low (5.6%) and not associated with amikacin exposure (OR 0.56, 95% CI 0.22-1.43, p = 0.23), even in those with pre-existing renal impairment or AKI on admission. The clinical outcomes (including cure by the third day, AKI, maximal creatinine, length of stay, mortality, and readmission) did not differ between the groups. Once-daily amikacin may offer a safe UTI treatment option amid increasing multi-drug resistance.

17.
Antimicrob Agents Chemother ; 68(3): e0139423, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289076

RESUMO

Amikacin is an FDA-approved aminoglycoside antibiotic that is commonly used. However, validated dosage regimens that achieve clinically relevant exposure profiles in mice are lacking. We aimed to design and validate humanized dosage regimens for amikacin in immune-competent murine bloodstream and lung infection models of Acinetobacter baumannii. Plasma and lung epithelial lining fluid (ELF) concentrations after single subcutaneous doses of 1.37, 13.7, and 137 mg/kg of body weight were simultaneously modeled via population pharmacokinetics. Then, humanized amikacin dosage regimens in mice were designed and prospectively validated to match the peak, area, trough, and range of plasma concentration profiles in critically ill patients (clinical dose: 25-30 mg/kg of body weight). The pharmacokinetics of amikacin were linear, with a clearance of 9.93 mL/h in both infection models after a single dose. However, the volume of distribution differed between models, resulting in an elimination half-life of 48 min for the bloodstream and 36 min for the lung model. The drug exposure in ELF was 72.7% compared to that in plasma. After multiple q6h dosing, clearance decreased by ~80% from the first (7.35 mL/h) to the last two dosing intervals (~1.50 mL/h) in the bloodstream model. Likewise, clearance decreased by 41% from 7.44 to 4.39 mL/h in the lung model. The humanized dosage regimens were 117 mg/kg of body weight/day in mice [administered in four fractions 6 h apart (q6h): 61.9%, 18.6%, 11.3%, and 8.21% of total dose] for the bloodstream and 96.7 mg/kg of body weight/day (given q6h as 65.1%, 16.9%, 10.5%, and 7.41%) for the lung model. These validated humanized dosage regimens and population pharmacokinetic models support translational studies with clinically relevant amikacin exposure profiles.


Assuntos
Amicacina , Pneumonia , Humanos , Animais , Camundongos , Amicacina/farmacocinética , Antibacterianos/farmacocinética , Pulmão , Pneumonia/tratamento farmacológico , Peso Corporal
18.
Int J Antimicrob Agents ; 63(2): 107089, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218322

RESUMO

OBJECTIVES: Aminoglycoside resistance in bacteria is typically conferred by specific drug-modifying enzymes. Infrequently, such resistance is achieved through 16S ribosomal RNA methyltransferases, such as NpmA and KamB encoded by Escherichia coli and Streptoalloteichus tenebrarius, respectively. These enzymes are not widespread and have not been described in Nocardia species to date. METHODS: We report the genomic mining of 18 Nocardia wallacei isolates that were found to be specifically and substantially resistant to amikacin. RESULTS: We identified a gene coding for a protein with very distant homology to NpmA and KamB. However, 3-D modeling revealed that the tertiary structure of these three proteins was highly similar. Cloning and expressing this gene in two susceptible bacteria Nocardia asteroides, and Mycobacterium smegmatis (another Actinobacterium) led to high-level, pan-aminoglycoside resistance in both cases. We named this gene warA (Wallacei Amikacin Resistance A). CONCLUSIONS: This is the first description and experimental characterization of a gene of this family in Nocardia, and the first demonstration that such activity could lead to pan-aminoglycoside resistance in Mycobacteria as well. The discovery of this novel gene has important biotechnology and clinical implications.


Assuntos
Mycobacterium , Nocardia , Aminoglicosídeos/metabolismo , Amicacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Nocardia/genética , Nocardia/metabolismo , Escherichia coli/genética , Mycobacterium/genética , Mycobacterium/metabolismo , RNA Ribossômico 16S/genética , Farmacorresistência Bacteriana/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-38199247

RESUMO

Changes in expression levels of drug efflux pump genes, mexB and mexY, and porin gene oprD in Pseudomonas aeruginosa were investigated in this study. Fifty-five multidrug-resistant P. aeruginosa (MDRP) strains were compared with 26 drug-sensitive strains and 21 strains resistant to a single antibiotic. The effect of the efflux inhibitor Phe-Arg-ß-naphthylamide on drug susceptibility was determined, and gene expression was quantified using real-time quantitative real-time reverse transcription polymerase chain reaction. In addition, the levels of metallo-ß-lactamase (MBL) and 6'-N-aminoglycoside acetyltransferase [AAC(6')-Iae] were investigated. Efflux pump inhibitor treatment increased the sensitivity to ciprofloxacin, aztreonam, and imipenem in 71%, 73%, and 29% of MDRPs, respectively. MBL and AAC(6')-Iae were detected in 38 (69%) and 34 (62%) MDRP strains, respectively. Meanwhile, 76% of MDRP strains exhibited more than 8-fold higher mexY expression than the reference strain PAO1. Furthermore, 69% of MDRP strains expressed oprD at levels less than 0.01-fold of those in PAO1. These findings indicated that efflux pump inhibitors in combination with ciprofloxacin or aztreonam might aid in treating MDRP infections.


Assuntos
Aztreonam , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Aztreonam/farmacologia , Ciprofloxacina/farmacologia , Imipenem , Transporte Biológico
20.
Biol Res ; 57(1): 3, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217055

RESUMO

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Assuntos
Exossomos , Neomicina , Neomicina/toxicidade , Neomicina/metabolismo , Exossomos/metabolismo , Células Ciliadas Auditivas , Autofagia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...